Covid-19 Articles

ACE2 – a receptor for SARS-CoV2

APEIRON Biologics Initiates Phase II Clinical Trial of APN01, the recombinant form of the human angiotensin-converting enzyme 2 (rhACE2), for Treatment of COVID-19. https://pipelinereview.com/index.php/2020040274194/Proteins-and-Peptides/APEIRON-Biologics-Initiates-Phase-II-Clinical-Trial-of-APN01-for-Treatment-of-COVID-19.html

Hoffmann et al. SARS-CoV-Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Mar 4. pii: S0092-8674(20)30229-4. doi: 10.1016/j.cell.2020.02.052. https://www.ncbi.nlm.nih.gov/pubmed/32142651

Shang et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020 Mar 30. doi: 10.1038/s41586-020-2179-y. https://www.ncbi.nlm.nih.gov/pubmed/32225175

Lan et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020 Mar 30. doi: 10.1038/s41586-020-2180-5.  https://www.ncbi.nlm.nih.gov/pubmed/32225176

Ou et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020 Mar 27;11(1):1620. doi: 10.1038/s41467-020-15562-9. https://www.ncbi.nlm.nih.gov/pubmed/32221306

Cao Y, et a. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov. 2020 Feb 24;6:11. doi: 10.1038/s41421-020-0147-1. eCollection 2020. https://www.ncbi.nlm.nih.gov/pubmed/32133153

Zhang H et al. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020 Apr;46(4):586-590. doi: 10.1007/s00134-020-05985-9. Epub 2020 Mar 3. https://www.ncbi.nlm.nih.gov/pubmed/32125455

Xu et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020 Feb 24;12(1):8. doi: 10.1038/s41368-020-0074-x. https://www.ncbi.nlm.nih.gov/pubmed/32094336

Delanghe et al. The host’s angiotensin-converting enzyme polymorphism may explain epidemiological findings in COVID-19 infections. Clin Chim Acta. 2020 Mar 24;505:192-193. doi: 10.1016/j.cca.2020.03.031. https://www.ncbi.nlm.nih.gov/pubmed/32220422

Sun et al. CD-sACE2 Inclusion Compounds: An Effective Treatment for Corona Virus Disease 2019 (COVID-19). J Med Virol. 2020 Mar 31. doi: 10.1002/jmv.25804. https://www.ncbi.nlm.nih.gov/pubmed/32232976

Zou et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020 Mar 12. doi: 10.1007/s11684-020-0754-0. https://www.ncbi.nlm.nih.gov/pubmed/32170560

Li et al. Analysis of angiotensin-converting enzyme 2 (ACE2) from different species sheds some light on cross-species receptor usage of a novel coronavirus 2019-nCoV. J Infect. 2020 Apr;80(4):469-496. doi: 10.1016/j.jinf.2020.02.013. Epub 2020 Feb 21. https://www.ncbi.nlm.nih.gov/pubmed/32092392

 

Covid-19 and the renin-angiotensin system

Bavishi et al. Coronavirus Disease 2019 (COVID-19) Infection and Renin Angiotensin System Blockers. JAMA Cardiol. 2020 Apr 3. doi: 10.1001/jamacardio.2020.1282. https://www.ncbi.nlm.nih.gov/pubmed/32242890

Sommerstein et al. Coronavirus Disease 2019 (COVID-19): Do Angiotensin-Converting Enzyme Inhibitors/Angiotensin Receptor Blockers Have a Biphasic Effect? J Am Heart Assoc. 2020 Apr 7;9(7):e016509. doi: 10.1161/JAHA.120.016509. Epub 2020 Apr 1. https://www.ncbi.nlm.nih.gov/pubmed/32233753

Chen et al. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res. 2020 Mar 30. pii: cvaa078. doi: 10.1093/cvr/cvaa078. https://www.ncbi.nlm.nih.gov/pubmed/32227090

Zhang F The potential risk of kidney vulnerable to novel coronavirus 2019 infection. Am J Physiol Renal Physiol. 2020 Mar 30. doi: 10.1152/ajprenal.00085.2020. https://www.ncbi.nlm.nih.gov/pubmed/32223555

Li et al. Antihypertensive treatment with ACEI/ARB of patients with COVID-19 complicated by hypertension. Hypertens Res. 2020 Mar 30. doi: 10.1038/s41440-020-0433-1. https://www.ncbi.nlm.nih.gov/pubmed/32231220

Meng et al. Renin-angiotensin system inhibitors improve the clinical outcomes of COVID-19 patients with hypertension. Emerg Microbes Infect. 2020 Dec;9(1):757-760. doi: 10.1080/22221751.2020.1746200. https://www.ncbi.nlm.nih.gov/pubmed/32228222

Marin et al. Facts and reflections on COVID-19 and anti-hypertensives drugs. Drug Discov Ther. 2020 Mar 26. doi: 10.5582/ddt.2020.01017. https://www.ncbi.nlm.nih.gov/pubmed/32213760

 

Covid-19 and cardiovascular and metabolic disease

Fried et al. The Variety of Cardiovascular Presentations of COVID-19. Circulation. 2020 Apr 3. doi: 10.1161/CIRCULATIONAHA.120.047164. https://www.ahajournals.org/doi/pdf/10.1161/CIRCULATIONAHA.120.047164

Guo J et al. Coronavirus Disease 2019 (COVID-19) and Cardiovascular Disease: A Viewpoint on the Potential Influence of Angiotensin-Converting Enzyme Inhibitors/Angiotensin Receptor Blockers on Onset and Severity of Severe Acute Respiratory Syndrome Coronavirus 2 Infection. J Am Heart Assoc. 2020 Apr 7;9(7):e016219. doi: 10.1161/JAHA.120.016219. Epub 2020 Apr 1. https://www.ncbi.nlm.nih.gov/pubmed/32233755

Hill et al. Commentary: COVID-19 in Patients with Diabetes. Metabolism. 2020 Mar 24:154217. doi: 10.1016/j.metabol.2020.154217.  https://www.ncbi.nlm.nih.gov/pubmed/32220611

Gup et al. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020 Mar 27. doi: 10.1001/jamacardio.2020.1017. https://www.ncbi.nlm.nih.gov/pubmed/32219356

Huang et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020 Feb 15;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5. Epub 2020 Jan 24. https://www.ncbi.nlm.nih.gov/pubmed/31986264

Elkind et al. Role of the American Heart Association in the Global COVID-19 Pandemic. Circulation. 2020 Mar 17. doi: 10.1161/CIRCULATIONAHA.120.046749. https://www.ncbi.nlm.nih.gov/pubmed/32181680

Zhou et al. Diabetes patients with COVID-19 need better blood glucose management in Wuhan, China. Metabolism. 2020 Mar 24;107:154216. doi: 10.1016/j.metabol.2020.154216.  https://www.ncbi.nlm.nih.gov/pubmed/32220612

South et al. COVID-19, ACE2 and the Cardiovascular Consequences. Am J Physiol Heart Circ Physiol. 2020 Mar 31. doi: 10.1152/ajpheart.00217.2020. https://www.ncbi.nlm.nih.gov/pubmed/32228252

Covid-19 and kidney disease

Fu et al. COVID-19 Infection in a Patient with End-Stage Kidney Disease. Nephron. 2020 Mar 27:1-3. doi: 10.1159/000507261. https://www.ncbi.nlm.nih.gov/pubmed/32222703

Choi et al. Renal replacement therapy is independently associated with a lower risk of death in patients with severe acute kidney injury treated with targeted temperature management after out-of-hospital cardiac arrest. Crit Care. 2020 Mar 23;24(1):115. doi: 10.1186/s13054-020-2822-x.https://www.ncbi.nlm.nih.gov/pubmed/32204725

Perico et al. Should COVID-19 Concern Nephrologists? Why and to What Extent? The Emerging Impasse of Angiotensin Blockade. Nephron. 2020 Mar 23:1-9. doi: 10.1159/000507305. https://www.ncbi.nlm.nih.gov/pubmed/32203970

Zhan et al. The potential risk of kidney vulnerable to novel coronavirus 2019 infection. Am J Physiol Renal Physiol. 2020 Mar 30. doi: 10.1152/ajprenal.00085.2020. https://www.ncbi.nlm.nih.gov/pubmed/32223555

Cheng et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020 Mar 20. pii: S0085-2538(20)30255-6. doi: 10.1016/j.kint.2020.03.005. https://www.ncbi.nlm.nih.gov/pubmed/32247631

Henry et al. Chronic kidney disease is associated with severe coronavirus disease 2019 (COVID-19) infection. Int Urol Nephrol. 2020 Mar 28. doi: 10.1007/s11255-020-02451-9. https://www.ncbi.nlm.nih.gov/pubmed/32222883