ACE2 – a receptor for SARS-CoV2

Paolo, et al. The Pivotal Link Between ACE2 Deficiency and SARS-CoV-2 Infection Eur J Intern Med . 2020 Apr 20;S0953-6205(20)30151-5. doi: 10.1016/j.ejim.2020.04.037. Online ahead of print. https://pubmed.ncbi.nlm.nih.gov/32336612

Jean et al. Susceptibility of the Elderly to SARS-CoV-2 Infection: ACE-2 Overexpression, Shedding, and Antibody-dependent Enhancement (ADE) Clinics (Sao Paulo) . 2020;75:e1912. doi: 10.6061/clinics/2020/e1912. Epub 2020 May 15. https://pubmed.ncbi.nlm.nih.gov/32428113

Adriana et al. The SARS-CoV-2 Receptor, ACE-2, Is Expressed on Many Different Cell Types: Implications for ACE-inhibitor- And Angiotensin II Receptor Blocker-Based Cardiovascular Therapies Intern Emerg Med. 2020 May 19;1-8. doi: 10.1007/s11739-020-02364-6. Online ahead of print. https://pubmed.ncbi.nlm.nih.gov/32430651

Arno et al. Angiotensin-converting enzyme-2 (ACE2), SARS-CoV-2 and Pathophysiology of Coronavirus Disease 2019 (COVID-19) J Pathol. 2020 May 17. doi: 10.1002/path.5471. Online ahead of print. https://pubmed.ncbi.nlm.nih.gov/32418199

Nicin el at. Cell type-specific expression of the putative SARS-CoV-2 receptor ACE2 in human hearts. Eur Heart J. 2020 Apr 15. pii: ehaa311. doi: 10.1093/eurheartj/ehaa311. https://www.ncbi.nlm.nih.gov/pubmed/32293672

Ancafora et al. Neprilysin inhibitor-angiotensin II receptor blocker combination (sacubitril/valsartan): rationale for adoption in SARS-CoV-2 patients. Eur Heart J Cardiovasc Pharmacother. 2020 Apr 13. pii: pvaa028. doi: 10.1093/ehjcvp/pvaa028.https://www.ncbi.nlm.nih.gov/pubmed/32282032

Lim et al. The SARS-CoV-2 receptor ACE2 expression of maternal-fetal interface and fetal organs by single-cell transcriptome study. PLoS One. 2020 Apr 16;15(4):e0230295. doi: 10.1371/journal.pone.0230295. eCollection 2020. https://www.ncbi.nlm.nih.gov/pubmed/32298273

Wang et al. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell. 2020 Apr 7. pii: S0092-8674(20)30338-X. doi: 10.1016/j.cell.2020.03.045. [Epub ahead of print]

https://www.ncbi.nlm.nih.gov/pubmed/32275855

Gian et al. Potential Harmful Effects of Discontinuing ACE-inhibitors and ARBs in COVID-19 Patients Elife. 2020 Apr 6;9:e57278 doi: 10.7554/eLife.57278. https://pubmed.ncbi.nlm.nih.gov/32250244

Eleanor et al. Binding of SARS-CoV-2 and Angiotensin-Converting Enzyme 2: Clinical Implications Cardiovasc Res . 2020 Jun 1;116(7):e87-e89. doi: 10.1093/cvr/cvaa096. https://pubmed.ncbi.nlm.nih.gov/32301968

Hisashi et al. Interactions of Coronaviruses With ACE2, Angiotensin II, and RAS Inhibitors-Lessons From Available Evidence and Insights Into COVID-19 Hypertens Res. 2020 Apr 27;1-7. doi: 10.1038/s41440-020-0455-8. https://pubmed.ncbi.nlm.nih.gov/32341442

Paolo et al. [ACE-inhibitors, Angiotensin Receptor Blockers and Severe Acute Respiratory Syndrome Caused by Coronavirus] G Ital Cardiol (Rome). 2020 May;21(5):321-327. doi: 10.1714/3343.33127. https://pubmed.ncbi.nlm.nih.gov/32310915

Liang Chen. The ACE2 Expression in Human Heart Indicates New Potential Mechanism of Heart Injury Among Patients Infected With SARS-CoV-2 Cardiovasc Res. 2020 May 1;116(6):1097-1100. doi: 10.1093/cvr/cvaa078. https://pubmed.ncbi.nlm.nih.gov/32227090

Mahmound et al. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2 Circ Res. 2020 May 8;126(10):1456-1474. doi: 10.1161/CIRCRESAHA.120.317015. https://pubmed.ncbi.nlm.nih.gov/32264791

Jun Lan et al. Structure of the SARS-CoV-2 Spike Receptor-Binding Domain Bound to the ACE2 Receptor  y;581(7807):215-220. doi: 10.1038/s41586-020-2180-5. https://pubmed.ncbi.nlm.nih.gov/32225176

Markus et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor Cell. 2020 Apr 16;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052. https://pubmed.ncbi.nlm.nih.gov/32142651

Aneta et al. COVID-19 and Renin-Angiotensin System Inhibition – Role of Angiotensin Converting Enzyme 2 (ACE2) – Is There Any Scientific Evidence for Controversy? J Intern Med. 2020 May 27. doi: 10.1111/joim.13101. https://pubmed.ncbi.nlm.nih.gov/32459372

Mattia et al. Sars-CoV-2 and Black Population: ACE2 as Shield or Blade? Infect Genet Evol. 2020 May 13;84:104361. doi: 10.1016/j.meegid.2020.104361 https://pubmed.ncbi.nlm.nih.gov/32458811

Wanbo et al. Identification of SARS-CoV RBD-targeting Monoclonal Antibodies With Cross-Reactive or Neutralizing Activity Against SARS-CoV-2 Antiviral Res. 2020 May 13;179:104820.doi: 0.1016/j.antiviral.2020.104820 https://pubmed.ncbi.nlm.nih.gov/32458809

Mattia et al. Sars-CoV-2 and Black Population: ACE2 as Shield or Blade? Infect Genet Evol. 2020 May 13;84:104361.doi: 10.1016/j.meegid.2020.104361. https://pubmed.ncbi.nlm.nih.gov/32458811

Peter et al. ACE2, TMPRSS2 AND FURIN GENE EXPRESSION IN THE AIRWAYS OF PEOPLE WITH ASTHMA – IMPLICATIONS FOR COVID-19. J Allergy Clin Immunol. 2020 May 22;S0091-6749(20)30730-2. doi: 10.1016/j.jaci.2020.05.013. https://pubmed.ncbi.nlm.nih.gov/32450087/?

Sayeed et al. Alternative Splicing of ACE2 Possibly Generates Variants That May Limit the Entry of SARS-CoV-2: A Potential Therapeutic Approach Using SSOs Clin Sci (Lond). 2020 May 29;134(10):1143-1150.doi: 10.1042/CS20200419. https://pubmed.ncbi.nlm.nih.gov/32442315

Patel et al. Renin-angiotensin-aldosterone System Inhibitors Impact on COVID-19 Mortality: What’s Next for ACE2? Clin Infect Dis. 2020 May 22;ciaa627. doi: 10.1093/cid/ciaa627. https://pubmed.ncbi.nlm.nih.gov/32442259

Francois et al. Downregulation of ACE2 Induces Overstimulation of the Renin-Angiotensin System in COVID-19: Should We Block the Renin-Angiotensin System? Hypertens Res. 2020 May 22;1-3.doi: 10.1038/s41440-020-0476-3 https://pubmed.ncbi.nlm.nih.gov/32439915

Liu et al. Potential Role of ACE2 in Coronavirus Disease 2019 (COVID-19) Prevention and Management. J Transl Int Med. 2020 May 9;8(1):9-19. doi: 10.2478/jtim-2020-0003 https://pubmed.ncbi.nlm.nih.gov/32435607

APEIRON Biologics Initiates Phase II Clinical Trial of APN01, the recombinant form of the human angiotensin-converting enzyme 2 (rhACE2), for Treatment of COVID-19. https://pipelinereview.com/index.php/2020040274194/Proteins-and-Peptides/APEIRON-Biologics-Initiates-Phase-II-Clinical-Trial-of-APN01-for-Treatment-of-COVID-19.html

Hoffmann et al. SARS-CoV-Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Mar 4. pii: S0092-8674(20)30229-4. doi: 10.1016/j.cell.2020.02.052. https://www.ncbi.nlm.nih.gov/pubmed/32142651

Shang et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020 Mar 30. doi: 10.1038/s41586-020-2179-y. https://www.ncbi.nlm.nih.gov/pubmed/32225175

Lan et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020 Mar 30. doi: 10.1038/s41586-020-2180-5.  https://www.ncbi.nlm.nih.gov/pubmed/32225176

Ou et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020 Mar 27;11(1):1620. doi: 10.1038/s41467-020-15562-9. https://www.ncbi.nlm.nih.gov/pubmed/32221306

Cao Y, et a. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov. 2020 Feb 24;6:11. doi: 10.1038/s41421-020-0147-1. eCollection 2020. https://www.ncbi.nlm.nih.gov/pubmed/32133153

Zhang H et al. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020 Apr;46(4):586-590. doi: 10.1007/s00134-020-05985-9. Epub 2020 Mar 3. https://www.ncbi.nlm.nih.gov/pubmed/32125455

Xu et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020 Feb 24;12(1):8. doi: 10.1038/s41368-020-0074-x. https://www.ncbi.nlm.nih.gov/pubmed/32094336

Delanghe et al. The host’s angiotensin-converting enzyme polymorphism may explain epidemiological findings in COVID-19 infections. Clin Chim Acta. 2020 Mar 24;505:192-193. doi: 10.1016/j.cca.2020.03.031. https://www.ncbi.nlm.nih.gov/pubmed/32220422

Sun et al. CD-sACE2 Inclusion Compounds: An Effective Treatment for Corona Virus Disease 2019 (COVID-19). J Med Virol. 2020 Mar 31. doi: 10.1002/jmv.25804. https://www.ncbi.nlm.nih.gov/pubmed/32232976

Zou et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020 Mar 12. doi: 10.1007/s11684-020-0754-0. https://www.ncbi.nlm.nih.gov/pubmed/32170560

Li et al. Analysis of angiotensin-converting enzyme 2 (ACE2) from different species sheds some light on cross-species receptor usage of a novel coronavirus 2019-nCoV. J Infect. 2020 Apr;80(4):469-496. doi: 10.1016/j.jinf.2020.02.013. Epub 2020 Feb 21. https://www.ncbi.nlm.nih.gov/pubmed/32092392

 

Lalitha et al. Evolutionary Relationships and Sequence-Structure Determinants in Human SARS coronavirus-2 Spike Proteins for Host Receptor Recognition. Proteins. 2020 Jun 16.

PMID: 32543705 DOI: 10.1002/prot.25967

Lingli Zou et al. ACE2 and TMPRSS2 Are Expressed on the Human Ocular Surface, Suggesting Susceptibility to SARS-CoV-2 Infection. Ocul Surf. 2020 Jun 13;S1542-0124(20)30104-X.

PMID: 32544566 PMCID: PMC7293510 DOI: 10.1016/j.jtos.2020.06.007

Jingfang Wang et al. Molecular Simulation of SARS-CoV-2 Spike Protein Binding to Pangolin ACE2 or Human ACE2 Natural Variants Reveals Altered Susceptibility to Infection. J Gen Virol. 2020 Jun 15.

PMID: 32538738 DOI: 10.1099/jgv.0.001452

Ji-Young Choi et al. Altered COVID-19 Receptor ACE2 Expression in a Higher Risk Group for Cerebrovascular Disease and Ischemic Stroke. Biochem Biophys Res Commun. 2020 May 29;528(3):413-419.

PMID: 32513532 PMCID: PMC7256621 DOI: 10.1016/j.bbrc.2020.05.203

De Cauwer et al. The SARS-CoV-2 Receptor, ACE-2, Is Expressed on Many Different Cell Types: Implications for ACE-inhibitor- And Angiotensin II Receptor Blocker-Based Cardiovascular Therapies: Comment. Intern Emerg Med. 2020 Jun 20;1-2.

PMID: 32564289 PMCID: PMC7305057 DOI: 10.1007/s11739-020-02406-z

Schmitt et al. ACE2 and TMPRSS2 Variation in Savanna Monkeys (Chlorocebus Spp.): Potential Risk for zoonotic/anthroponotic Transmission of SARS-CoV-2 and a Potential Model for Functional Studies. PLoS One. 2020 Jun 23;15(6):e0235106.

PMID: 32574196 DOI: 10.1371/journal.pone.0235106